Variables in DALEC 1100
Variables used in DALEC model
Abbreviation |
Description |
Units |
Code string |
Notes |
---|---|---|---|---|
\(SSRD\) |
Downwelling shortwave radiation |
J m-2 d-1 |
|
|
\(STRD\) |
Downwelling longwave radiation |
J m-2 d-1 |
|
|
\(T_{min}\) |
Minimum temperature |
K |
|
Mean of daily minimum temperature over time step |
\(T_{max}\) |
Maximum temperature |
K |
|
Mean of daily maximum temperature over time step |
\(T_{skin}\) |
Skin temperature |
K |
|
|
\(P_{tot}\) |
Total precipitation |
mmH2O d-1 |
|
Includes rain and snowfall |
\(P_{snow}\) |
Snowfall |
mmH2O d-1 |
|
Must be less than or equal to \(P_{tot}\) |
\(VPD\) |
Vapor pressure deficit |
mPa |
|
|
\(CO2\) |
Atmospheric CO2 concentration |
ppm |
|
|
\(BA\) |
Burned area |
m2 m-2 |
|
|
\(DIST\) |
Non-fire distirbance |
gC m-2 d-1 |
|
|
\(YIELD\) |
Yield |
??? |
|
Abbreviation |
Description |
Units |
Fluxes/forcing in |
Fluxes out |
Code string |
Notes |
---|---|---|---|---|---|---|
\(C_{lab}\) |
Labile carbon (non-structural carbohydrate) |
gC m-2 |
\(GPP\) |
\(Ra_{dark}\), \(Ra_{maint}\), \(Ra_{gr}\), \(PRD_{fol}\), \(PRD_{roo}\), \(PRD_{woo}\), \(DEC_{lab}\), \(DIS_{lab}\), \(FIR_{lab}\), \(FIRx_{lab}\) |
|
|
\(C_{fol}\) |
Foliar carbon |
gC m-2 |
\(PRD_{fol}\) |
\(DEC_{fol}\), \(DECph_{fol}\), \(FIR_{fol}\), \(FIRx_{fol}\), \(DIS_{fol}\) |
|
|
\(C_{woo}\) |
Wood/ligneous carbon |
gC m-2 |
\(PRD_{woo}\) |
\(DEC_{woo}\), \(FIR_{woo}\), \(FIRx_{woo}\), \(DIS_{woo}\) |
|
Includes woody root biomass |
\(C_{roo}\) |
Fine root carbon |
gC m-2 |
\(PRD_{roo}\) |
\(DEC_{roo}\), \(FIR_{roo}\), \(FIRx_{roo}\), \(DIS_{roo}\) |
|
Does not include woody root biomass |
\(C_{lit}\) |
Litter carbon |
gC m-2 |
add yield \(DEC_{lab}\), \(DEC_{fol}\), \(DECph_{fol}\), \(DEC_{roo}\), \(FIRx_{lab}\), \(FIRx_{fol}\), \(FIRx_{roo}\) |
add yield \(RhAe_{lit}\), \(RhAn_{lit}\), \(DEC_{lit}\), \(FIR_{lit}\), \(FIRx_{lit}\) |
|
|
\(C_{cwd}\) |
Coarse woody debris carbon |
gC m-2 |
add yield \(DEC_{woo}\), \(FIR_{woo}\) |
\(RhAe_{cwd}\), \(RhAn_{cwd}\), \(DEC_{cwd}\), \(FIR_{cwd}\), \(FIRx_{cwd}\)\(RhAe_{cwd}\), \(RhAn_{cwd}\), \(DEC_{cwd}\), \(FIR_{cwd}\), \(FIRx_{cwd}\) |
|
|
\(C_{som}\) |
Soil organic matter carbon |
gC m-2 |
\(DEC_{lit}\), \(FIRx_{lit}\), \(DEC_{cwd}\), \(FIRx_{cwd}\), |
\(RhAe_{som}\), \(RhAn_{som}\), \(FIR_{som}\) |
|
|
\(W_{ly1}\) |
Layer 1 water |
mmH2O |
\(Qx_{inf}\) |
\(Ev\), \(Tr_{ly1}\), \(Q_{ly1}\), \(Qx_{ly1,2}\) |
|
|
\(W_{ly2}\) |
Layer 2 water |
mmH2O |
\(Qx_{ly1,2}\) |
\(Tr_{ly2}\), \(Q_{ly2}\), \(Qx_{ly2,3}\) |
|
|
\(W_{ly3}\) |
Layer 3 water |
mmH2O |
\(Qx_{ly2,3}\) |
\(Q_{ly3}\) |
|
|
\(W_{swe}\) |
Snow water equivalent |
mmH2O |
\(P_{snow}\) |
\(Melt\), \(Subl\) |
|
|
\(E_{ly1}\) |
Energy content of \(W_{ly1}\) |
J m-2 |
\(E_{gh}\), \(EQx_{inf}\) |
\(EEv\), \(ETr_{ly1}\), \(EQ_{ly1}\), \(EQx_{ly1,2}\), \(EQthx_{ly1,2}\) |
|
|
\(E_{ly2}\) |
Energy content of \(W_{ly2}\) |
J m-2 |
\(EQx_{ly1,2}\), \(EQthx_{ly1,2}\) |
\(ETr_{ly2}\), \(EQ_{ly2}\), \(EQx_{ly2,3}\), \(EQthx_{ly2,3}\) |
|
|
\(E_{ly3}\) |
Energy content of \(W_{ly3}\) |
J m-2 |
\(E_{geo}\), \(EQx_{ly2,3}\), \(EQthx_{ly2,3}\) |
\(EQ_{ly3}\) |
|
:math:Abbreviation |
Description |
Units |
Code string |
Notes |
---|---|---|---|---|
\(LAI\) |
Leaf area index |
m2 m-2 |
|
|
\(SCF\) |
Snow covered fraction |
1 |
|
Fraction of non-vegetation-covered land surface (gap fraction) that is covered by a layer of snow. |
\(T_{ly1}\) |
\(W_{ly1}\) temperature |
K |
|
|
\(T_{ly2}\) |
\(W_{ly2}\) temperature |
K |
|
|
\(T_{ly3}\) |
\(W_{ly3}\) temperature |
K |
|
|
\(LF_{ly1}\) |
\(W_{ly1}\) liquid fraction |
1 |
|
Ratio of liquid water to total water in layer 1 |
\(LF_{ly2}\) |
\(W_{ly2}\) liquid fraction |
1 |
|
Ratio of liquid water to total water in layer 2 |
\(LF_{ly3}\) |
\(W_{ly3}\) liquid fraction |
1 |
|
Ratio of liquid water to total water in layer 3 |
\(\theta_{ly1}\) |
\(W_{ly1}\) soil moisture |
1 |
|
Ratio of total water to pore space in layer 1 |
\(\theta_{ly2}\) |
\(W_{ly2}\) soil moisture |
1 |
|
Ratio of total water to pore space in layer 2 |
\(\theta_{ly3}\) |
\(W_{ly3}\) soil moisture |
1 |
|
Ratio of total water to pore space in layer 3 |
\(\Psi_{ly1}\) |
\(W_{ly1}\) water potential |
MPa |
|
|
\(\Psi_{ly2}\) |
\(W_{ly2}\) water potential |
MPa |
|
|
\(\Psi_{ly3}\) |
\(W_{ly3}\) water potential |
MPa |
|
Abbreviation |
Description |
Units |
Code string |
Notes |
---|---|---|---|---|
\(GPP\) |
Gross primary production |
gC m-2 d-1 |
|
Gross C assimilation, without leaf maintenance respiration removed |
\(GPP_{net}\) |
Net gross primary production |
gC m-2 d-1 |
|
Net \(GPP\) after removing leaf maintenance respiration, same as labile production |
\(PRD_{lab}\) |
Labile production |
gC m-2 d-1 |
|
Same as \(GPP_{net}\) (flagged for removal) |
\(PRD_{fol}\) |
Foliar production |
gC m-2 d-1 |
|
|
\(PRD_{roo}\) |
Fine root production |
gC m-2 d-1 |
|
|
\(PRD_{woo}\) |
Wood and coarse root production |
gC m-2 d-1 |
|
|
\(Ra_{gr}\) |
Autotrophic growth respiration |
gC m-2 d-1 |
|
|
\(Ra_{dark}\) |
Autotrophic maintenance dark respiration |
gC m-2 d-1 |
|
Mitochondrial respiration from \(C_{fol}\) |
\(Ra_{maint}\) |
Autotrophic maintenance respiration |
gC m-2 d-1 |
|
Includes \(Ra_{dark}\) |
\(RhAe_{cwd}\) |
Aerobic heterotrophic respiration from \(C_{cwd}\) |
gC m-2 d-1 |
|
|
\(DEC_{fol}\) |
Background foliar mortality |
gC m-2 d-1 |
|
\(C_{fol}\) transferred to \(C_{lit}\) due to mortality |
\(DECph_{fol}\) |
Phenological foliar mortality |
gC m-2 d-1 |
|
\(C_{fol}\) transferred to \(C_{lit}\) due to phenological senescence |
\(DEC_{woo}\) |
Wood and coarse root mortality |
gC m-2 d-1 |
|
\(C_{woo}\) transferred to \(C_{cwd}\) |
\(DEC_{roo}\) |
Fine root mortality |
gC m-2 d-1 |
|
\(C_{roo}\) transferred to \(C_{lit}\) |
\(DEC_{lab}\) |
Labile mortality |
gC m-2 d-1 |
|
\(C_{lab}\) transferred to \(C_{lit}\) |
\(DEC_{cwd}\) |
Coarse woody debris decomposition |
gC m-2 d-1 |
|
\(C_{cwd}\) transferred to \(C_{som}\) |
\(DEC_{lit}\) |
Litter decomposition |
gC m-2 d-1 |
|
\(C_{lit}\) transferred to \(C_{som}\) |
\(DIS_{lab}\) |
\(C_{lab}\) disturbance loss |
gC m-2 d-1 |
|
|
\(DIS_{fol}\) |
\(C_{fol}\) disturbance loss |
gC m-2 d-1 |
|
|
\(DIS_{woo}\) |
\(C_{woo}\) disturbance loss |
gC m-2 d-1 |
|
|
\(DIS_{roo}\) |
\(C_{roo}\) disturbance loss |
gC m-2 d-1 |
|
|
\(FIR_{lab}\) |
\(C_{lab}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{fol}\) |
\(C_{fol}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{woo}\) |
\(C_{woo}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{roo}\) |
\(C_{roo}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{lit}\) |
\(C_{lit}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{cwd}\) |
\(C_{cwd}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIR_{som}\) |
\(C_{som}\) fire loss |
gC m-2 d-1 |
|
Combustion loss to atmosphere |
\(FIRx_{lab}\) |
\(C_{lab}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{lab}\) to \(C_{lit}\) due to fire |
\(FIRx_{fol}\) |
\(C_{fol}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{fol}\) to \(C_{lit}\) due to fire |
\(FIRx_{roo}\) |
\(C_{roo}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{roo}\) to \(C_{lit}\) due to fire |
\(FIRx_{woo}\) |
\(C_{woo}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{woo}\) to \(C_{cwd}\) due to fire |
\(FIRx_{cwd}\) |
\(C_{cwd}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{cwd}\) to \(C_{som}\) due to fire |
\(FIRx_{lit}\) |
\(C_{lit}\) fire mortality |
gC m-2 d-1 |
|
Transfer of \(C_{lit}\) to \(C_{som}\) due to fire |
\(RhAe_{lit}\) |
Aerobic heterotrophic respiration from \(C_{lit}\) |
gC m-2 d-1 |
|
|
\(RhAe_{som}\) |
Aerobic heterotrophic respiration from \(C_{som}\) |
gC m-2 d-1 |
|
|
\(RhAe_{tot}\) |
Total heterotrophic respiration CO2 flux |
gC m-2 d-1 |
|
Sum of \(RhAe_{cwd}\), \(RhAe_{lit}\), and \(RhAe_{som}\) |
\(RhAn_{cwd}\) |
Anaerobic heterotrophic respiration from \(C_{cwd}\) |
gC m-2 d-1 |
|
|
\(RhAn_{lit}\) |
Anaerobic heterotrophic respiration from \(C_{lit}\) |
gC m-2 d-1 |
|
|
\(RhAn_{som}\) |
Anaerobic heterotrophic respiration from \(C_{som}\) |
gC m-2 d-1 |
|
|
\(RhAn_{tot}\) |
Total heterotrophic respiration CH4 flux |
gC m-2 d-1 |
|
Sum of \(RhAn_{cwd}\), \(RhAn_{lit}\), and \(RhAn_{som}\) |
\(Q_{surf}\) |
Surface H2O runoff |
mmH2O d-1 |
|
|
\(Q_{ly1}\) |
Runoff from \(W_{ly1}\) |
mmH2O d-1 |
|
|
\(Q_{ly2}\) |
Runoff from \(W_{ly2}\) |
mmH2O d-1 |
|
|
\(Q_{ly3}\) |
Runoff from \(W_{ly3}\) |
mmH2O d-1 |
|
|
\(Qx_{inf}\) |
Surface H2O infiltration to \(W_{ly1}\) |
mmH2O d-1 |
|
|
\(Qx_{ly1,2}\) |
Transfer from \(W_{ly1}\) to \(W_{ly2}\) |
mmH2O d-1 |
|
Positive values indicate downward transfer |
\(Qx_{ly2,3}\) |
Transfer from \(W_{ly2}\) to \(W_{ly3}\) |
mmH2O d-1 |
|
Positive values indicate downward transfer |
\(EQ_{ly1}\) |
Internal energy of \(Q_{ly1}\) |
J m-2 d-1 |
|
Based on temperature of \(W_{ly1}\) |
\(EQ_{ly2}\) |
Internal energy of \(Q_{ly2}\) |
J m-2 d-1 |
|
Based on temperature of \(W_{ly2}\) |
\(EQ_{ly3}\) |
Internal energy of \(Q_{ly3}\) |
J m-2 d-1 |
|
Based on temperature of \(W_{ly2}\) |
\(EQx_{inf}\) |
Internal energy of \(Qx_{inf}\) |
J m-2 d-1 |
|
Based on weighted average temperature of snow melt (273.15K) and rainfall (air temperature)’; |
\(EQx_{ly1,2}\) |
Internal energy of \(Qx_{ly1,2}\) |
J m-2 d-1 |
|
Based on temperature of donor pool (\(W_{ly1}\) when \(Qx_{ly1,2}\) is positive, \(W_{ly2}\) when \(Qx_{ly1,2}\) is negative) |
\(EQx_{ly2,3}\) |
Internal energy of \(Qx_{ly2,3}\) |
J m-2 d-1 |
|
Based on temperature of donor pool (\(W_{ly2}\) when \(Qx_{ly2,3}\) is positive, \(W_{ly3}\) when \(Qx_{ly2,3}\) is negative) |
\(EQthx_{ly1,2}\) |
Thermal condictivity between \(E_{ly1}\) and \(E_{ly2}\) |
J m-2 d-1 |
|
|
\(EQthx_{ly2,3}\) |
Thermal condictivity between \(E_{ly2}\) and \(E_{ly3}\) |
J m-2 d-1 |
|
|
\(E_{gh}\) |
Ground heat heat flux |
J m-2 d-1 |
|
|
\(E_{geo}\) |
Geological heat flux |
J m-2 d-1 |
|
|
\(Snow\) |
Snowfall |
mmH2O d-1 |
|
Identical to \(P_{snow}\) forcing |
\(Melt\) |
Snowmelt |
mmH2O d-1 |
|
|
\(Subl\) |
Sublimation |
mmH2O d-1 |
|
|
\(Ev\) |
Evaporation |
mmH2O d-1 |
|
|
\(Tr_{ly1}\) |
Transpiration from \(W_{ly1}\) |
mmH2O d-1 |
|
|
\(Tr_{ly2}\) |
Transpiration from \(W_{ly2}\) |
mmH2O d-1 |
|
|
\(EEv\) |
Internal energy of \(Ev\) |
J m-2 d-1 |
|
|
\(ETr_{ly1}\) |
Internal energy of \(Tr_{ly1}\) |
J m-2 d-1 |
|
|
\(ETr_{ly2}\) |
Internal energy of \(Tr_{ly2}\) |
J m-2 d-1 |
|
|
\(SW_{in}\) |
Incoming shortwave radiation |
W m-2 |
|
\(SSRD\) forcing converted to W m-2 |
\(LW_{in}\) |
Incoming longtwave radiation |
W m-2 |
|
\(STRD\) forcing converted to W m-2 |
\(SW_{out}\) |
Outgoing shortwave radiation |
W m-2 |
|
|
\(LW_{out}\) |
Outgoing longtwave radiation |
W m-2 |
|
|
\(R_{net}\) |
Net radiation |
W m-2 |
|
Defined as \(SW_{in} + LW_{in} - SW_{out} - LW_{out}\) |
\(H\) |
Sensible heat flux |
W m-2 |
|
|
\(LE\) |
Latent heat flux |
W m-2 |
|
|
\(G\) |
Ground heat flux |
W m-2 |
|
Abbreviation |
Description |
Units |
Code string |
Prior range |
Notes |
---|---|---|---|---|---|
\(I_{max}\) |
Maximum infiltration capacity |
mmH2O d-1 |
|
\([1,100]\) |
|
\(\kappa_0\) |
Saturated hydraulic conductivity |
m s-1 |
|
\([10^{-9},10^{-4}]\) |
|
\(b\) |
Retention parameter |
None |
|
\([1.5,10]\) |
|
\(z_{ly1}\) |
\(W_{ly1}\) depth |
m |
|
\([0.01,1]\) |
|
\(z_{ly2}\) |
\(W_{ly2}\) depth |
m |
|
\([0.01,20]\) |
|
\(z_{ly3}\) |
\(W_{ly3}\) depth |
m |
|
\([0.01,100]\) |
|
\(p_{ly1}\) |
\(W_{ly1}\) porosity |
m3 m-3 |
|
\([0.2,0.8]\) |
|
\(p_{ly2}\) |
\(W_{ly2}\) porosity |
m3 m-3 |
|
\([0.2,0.8]\) |
|
\(p_{ly3}\) |
\(W_{ly3}\) porosity |
m3 m-3 |
|
\([0.2,0.8]\) |
|
\(\psi_{fc}\) |
Water potential at field capacity |
-MPa |
|
\([0.01,0.1]\) |
|
\(DF_{lit}\) |
Fraction of decomposed \(C_{lit}\) transferred to \(C_{som}\) |
1 |
|
\([0.01,0.99]\) |
|
\(DF_{cwd}\) |
Fraction of decomposed \(C_{cwd}\) transferred to \(C_{som}\) |
1 |
|
\([0.01,0.99]\) |
|
\(K_{roo}\) |
Autotrophic maintenance respiration coefficient for roots at 25\(^{\circ}\)C |
d-1 |
|
\([10^{-4},10^{-2}]\) |
|
\(K_{woo}\) |
Autotrophic maintenance respiration coefficient for wood at 25\(^{\circ}\)C |
d-1 |
|
\([10^{-6},5 \times 10^{-5}]\) |
|
\(Q_{10}^{Ra}\) |
Autotrophic maintenance respiration Q10 coefficient |
1 |
|
\([1,5]\) |
|
\(Q_{10}^{dark}\) |
Dark respiration Q10 coefficient |
1 |
|
\([1,5]\) |
|
\(\Gamma\) |
Growth yield |
1 |
|
\([0.6,0.95]\) |
gC in new biomass per gC used for growth, see |
\(k_{woo}\) |
Background turnover rate of \(C_{woo}\) |
d-1 |
|
\([2.5\times 10^{-5},10^{-2}]\) |
|
\(k_{lab}\) |
Background turnover rate of \(C_{lab}\) |
d-1 |
|
\([10^{-4},10^{-2}]\) |
|
\(k_{roo}\) |
Background turnover rate of \(C_{roo}\) |
d-1 |
|
\([10^{-4},10^{-2}]\) |
|
\(k_{fol}\) |
Background turnover rate of \(C_{fol}\) |
d-1 |
|
\([6.8\times 10^{-4},3.34\times 10^{-2}]\) |
|
\(k_{lit}\) |
Background turnover rate of \(C_{lit}\) |
d-1 |
|
\([10^{-4},10^{-1}]\) |
|
\(k_{cwd}\) |
Background turnover rate of \(C_{cwd}\) |
d-1 |
|
\([5\times 10^{-5},5\times 10^{-2}]\) |
|
\(k_{som}\) |
Background turnover rate of \(C_{som}\) |
d-1 |
|
\([10^{-7},10^{-1}]\) |
|
\(Q_{10}^{aer}\) |
Q10 coefficient of aerobic heterotrphic respiration |
1 |
|
\([1,5]\) |
|
\(Q_{10}^{ana}\) |
Q10 coefficient of anaerobic heterotrphic respiration |
1 |
|
\([1,5]\) |
|
\(f_{CH_{4}}\) |
CH4 to CO2 conversion ratio |
1 |
|
\([0.001,0.9]\) |
|
\(LCMA\) |
Leaf carbon mass per area |
gC m-2 |
|
\([5,200]\) |
|
\(i_{C_{lab}}\) |
Initial value of \(C_{lab}\) |
gC m-2 |
|
\([1,10^{5}]\) |
|
\(i_{C_{fol}}\) |
Initial value of \(C_{fol}\) |
gC m-2 |
|
\([1,2\times 10^{3}]\) |
|
\(i_{C_{roo}}\) |
Initial value of \(C_{roo}\) |
gC m-2 |
|
\([1,2\times 10^{3}]\) |
|
\(i_{C_{woo}}\) |
Initial value of \(C_{woo}\) |
gC m-2 |
|
\([1,10^{5}]\) |
|
\(i_{C_{cwd}}\) |
Initial value of \(C_{cwd}\) |
gC m-2 |
|
\([1,10^{5}]\) |
|
\(i_{C_{lit}}\) |
Initial value of \(C_{lit}\) |
gC m-2 |
|
\([1,2\times 10^{3}]\) |
|
\(i_{C_{som}}\) |
Initial value of \(C_{som}\) |
gC m-2 |
|
\([1,2\times 10^{5}]\) |
|
\(i_{\theta_{ly1}}\) |
Initial value of \(\theta_{ly1}\) |
1 |
|
\([0.01,1]\) |
|
\(i_{\theta_{ly2}}\) |
Initial value of \(\theta_{ly2}\) |
1 |
|
\([0.01,1]\) |
|
\(i_{\theta_{ly3}}\) |
Initial value of \(\theta_{ly3}\) |
1 |
|
\([0.01,1]\) |
|
\(i_{SWE}\) |
Initial value of \(\W_{swe}\) |
mm H2O |
|
\([10^{-6},10^{4}]\) |
|
\(i_{E_{ly1}}\) |
Initial value of \(E_{ly1}\) |
J mmH2O-1 |
|
\([4.67\times 10^{5},1.11\times 10^{6}]\) |
|
\(i_{E_{ly2}}\) |
Initial value of \(E_{ly2}\) |
J mmH2O-1 |
|
\([4.67\times 10^{5},1.11\times 10^{6}]\) |
|
\(i_{E_{ly3}}\) |
Initial value of \(E_{ly3}\) |
J mmH2O-1 |
|
\([4.67\times 10^{5},1.11\times 10^{6}]\) |
|
\(VHC_{E_{ly1}}\) |
Volumetric heat capacity of \(E_{ly1}\) |
J K m-3 |
|
\([1.3\times 10^{6},3\times 10^{6}]\) |
|
\(VHC_{E_{ly2}}\) |
Volumetric heat capacity of \(E_{ly2}\) |
J K m-3 |
|
\([1.3\times 10^{6},3\times 10^{6}]\) |
|
\(VHC_{E_{ly3}}\) |
Volumetric heat capacity of \(E_{ly3}\) |
J K m-3 |
|
\([1.3\times 10^{6},3\times 10^{6}]\) |
|
\(CF_{fol}\) |
Foliar combustion factor |
1 |
|
\([0.01,1]\) |
|
\(CF_{lig}\) |
Ligneous combustion factor |
1 |
|
\([0.01,1]\) |
|
\(CF_{som}\) |
Soil combustion factor |
1 |
|
\([0.01,1]\) |
|
\(r\) |
Resilience factor |
1 |
|
\([0.01,1]\) |
|
\(Q_{ex}\) |
Excess runoff factor |
1 |
|
\([0.01,1]\) |
|
\(g_{1}\) |
Medlyn \(g_{1}\) parameter |
1 |
|
\([1.79,5.79]\) |
|
\(V_{cmax25}\) |
Maximum rate of RuBisCO carboxylization at 25\(^{\circ}\)C |
\(\mu\)molCO2 m-2 s-1 |
|
\([1,150]\) |
|
\(Tmin_{min}\) |
Minimum cold temperature scaling factor |
K |
|
\([258.15,273.15]\) |
|
\(Tmin_{max}\) |
Maximum cold temperature scaling factor |
K |
|
\([273.15,288.15]\) |
|
\(T_{upp}\) |
Upper temperature limit for photosynthesis |
K |
|
\([249.15,318.15]\) |
|
\(T_{down}\) |
Lower temperature limit for photosynthesis |
K |
|
\([213.15,286.15]\) |
|
\(g_{a}\) |
Aerodynamic conductance |
m s-1 |
|
\([10^{-3},10]\) |
|
\(\Omega\) |
Leaf clumping index |
1 |
|
\([0.35,1]\) |
|
\(\rho_{PAR}\) |
Reflectance for photosynthetically active radiation |
1 |
|
\([0.01,0.5]\) |
|
\(\rho_{NIR}\) |
Reflectance for near infrared radiation |
1 |
|
\([0.3,0.7]\) |
|
\(sn_{1}\) |
Minimum temperature threshold for snow melt |
K |
|
\([263.15,283.15]\) |
|
\(sn_{2}\) |
Snowmelt slope |
|
|
\([10^{-5},1]\) |
|
\(sn_{3}\) |
Snow cover fraction scalar |
|
|
\([10,10^{3}]\) |
|
\(S_{fv}\) |
Scalar for aerobic volumetric fraction |
|
|
\([1,100]\) |
|
\(\theta_{opt}\) |
Optimum soil moisture for water scalar in heterotrophic respiration |
1 |
|
\([0.2,1]\) |
|
\(F_{wc}\) |
water scaler fW value at the end point C |
|
|
\([0.01,1]\) |
|
\(Ev_{max}\) |
Maximum pan evaporation |
mm d-1 |
|
\([0.01,100]\) |
|
\(T_{\phi}\) |
Maximum temperature at leaf onset |
K |
|
\([268.15,323.15]\) |
|
\(T_{range}\) |
Spatial range of mean temperature at leaf onset |
K |
|
\([0.1,10]\) |
|
\(\Lambda_{g}\) |
LAI linear growth constant |
Per time-step |
|
\([0.001,0.5]\) |
|
\(K_{leaf}\) |
Inverse of leaf longevity during senescence period |
Per time-step |
|
\([0.001,0.5]\) |
|
\(\Lambda_{max}\) |
Intrinsic maximum LAI |
m2 m-2 |
|
\([0.1,10]\) |
|
\(\tau_{LAI}\) |
Target survival time for LAI under water-deficit conditions |
d |
|
\([0.1,300]\) |
|
\(t_{c}\) |
Mean daylength at leaf shedding |
hours of sunlight d-1 |
|
\([2,22]\) |
|
\(t_{r}\) |
Spatial range of \(t_{c}\) |
hours of sunlight d-1 |
|
\([0.1,6]\) |
|
\(T_{mem}\) |
Initial value of LAI temperature memory |
K |
|
\([268.14,323.15]\) |
|
\(\theta_{mem}\) |
Initial value of LAI water/structural memory |
1 |
|
\([0.1,1]\) |
|
\(\psi_{50}\) |
50% stomatal closure water potential |
-MPa |
|
\([0.1,30]\) |
Water potential when soil-plant continuum is at 50% hydraulic conductivity due to stomatal closure |
\(\psi_{hmf}\) |
50% mortality water potential |
-MPa |
|
\([0.1,30]\) |
Water potential triggering 50% biomass mortality due to cavitation |
\(\Beta_{plgr}\) |
Photosynthetic water stress logistic growth rate |
None |
|
\([4.1,50]\) |
|
\(\Beta_{mlgr}\) |
Mortality water stress logistic growth rate |
None |
|
\([4.1,50]\) |
|
\(\phi_{rl}\) |
Root-to-leaf allocation ratio |
1 |
|
\([10^{-4},5]\) |
Ratio of carbon allocation to root per target foliar pool size |
\(\phi_{wl}\) |
Wood-to-leaf allocation ratio |
1 |
|
\([10^{-4},5]\) |
Ratio of carbon allocation to wood per target foliar pool size |
\(\kappa_{deep}\) |
Deep soil thermal conductivity |
W m-1 K-1 |
|
\([0.3,2]\) |
|
\(\kappa_{surf}\) |
Surface soil thermal conductivity |
W m-1 K-1 |
|
\([0.03,2]\) |
|
\(Q_{10}^{gpp}\) |
Q10 coefficient for \(GPP\) |
1 |
|
\([1,5]\) |
|
\(RDSF\) |
|
|
|
\([0.005,0.025]\) |
|
\(Es\) |
Sublimation rate |
|
|
\([0.001,10]\) |
|
\(f_{root}\) |
Root fraction of \(W_{ly2}\) to \(W_{ly1}\) |
|
|
\([0.001,1]\) |