Variables in DALEC 1100

Variables used in DALEC model

Input variables

Abbreviation

Description

Units

Code string

Notes

\(SSRD\)

Downwelling shortwave radiation

J m-2 d-1

SSRD

\(STRD\)

Downwelling longwave radiation

J m-2 d-1

STRD

\(T_{min}\)

Minimum temperature

K

T2M_MIN

Mean of daily minimum temperature over time step

\(T_{max}\)

Maximum temperature

K

T2M_MAX

Mean of daily maximum temperature over time step

\(T_{skin}\)

Skin temperature

K

SKT

\(P_{tot}\)

Total precipitation

mmH2O d-1

PREC

Includes rain and snowfall

\(P_{snow}\)

Snowfall

mmH2O d-1

SNOWFALL

Must be less than or equal to \(P_{tot}\)

\(VPD\)

Vapor pressure deficit

mPa

VPD

\(CO2\)

Atmospheric CO2 concentration

ppm

CO2

\(BA\)

Burned area

m2 m-2

BURNED_AREA

\(DIST\)

Non-fire distirbance

gC m-2 d-1

DIST

\(YIELD\)

Yield

???

YIELD

Prognostic variables (pools)

Abbreviation

Description

Units

Fluxes/forcing in

Fluxes out

Code string

Notes

\(C_{lab}\)

Labile carbon (non-structural carbohydrate)

gC m-2

\(GPP\)

\(Ra_{dark}\), \(Ra_{maint}\), \(Ra_{gr}\), \(PRD_{fol}\), \(PRD_{roo}\), \(PRD_{woo}\), \(DEC_{lab}\), \(DIS_{lab}\), \(FIR_{lab}\), \(FIRx_{lab}\)

C_lab

\(C_{fol}\)

Foliar carbon

gC m-2

\(PRD_{fol}\)

\(DEC_{fol}\), \(DECph_{fol}\), \(FIR_{fol}\), \(FIRx_{fol}\), \(DIS_{fol}\)

C_fol

\(C_{woo}\)

Wood/ligneous carbon

gC m-2

\(PRD_{woo}\)

\(DEC_{woo}\), \(FIR_{woo}\), \(FIRx_{woo}\), \(DIS_{woo}\)

C_woo

Includes woody root biomass

\(C_{roo}\)

Fine root carbon

gC m-2

\(PRD_{roo}\)

\(DEC_{roo}\), \(FIR_{roo}\), \(FIRx_{roo}\), \(DIS_{roo}\)

C_roo

Does not include woody root biomass

\(C_{lit}\)

Litter carbon

gC m-2

add yield \(DEC_{lab}\), \(DEC_{fol}\), \(DECph_{fol}\), \(DEC_{roo}\), \(FIRx_{lab}\), \(FIRx_{fol}\), \(FIRx_{roo}\)

add yield \(RhAe_{lit}\), \(RhAn_{lit}\), \(DEC_{lit}\), \(FIR_{lit}\), \(FIRx_{lit}\)

C_lit

\(C_{cwd}\)

Coarse woody debris carbon

gC m-2

add yield \(DEC_{woo}\), \(FIR_{woo}\)

\(RhAe_{cwd}\), \(RhAn_{cwd}\), \(DEC_{cwd}\), \(FIR_{cwd}\), \(FIRx_{cwd}\)\(RhAe_{cwd}\), \(RhAn_{cwd}\), \(DEC_{cwd}\), \(FIR_{cwd}\), \(FIRx_{cwd}\)

C_cwd

\(C_{som}\)

Soil organic matter carbon

gC m-2

\(DEC_{lit}\), \(FIRx_{lit}\), \(DEC_{cwd}\), \(FIRx_{cwd}\),

\(RhAe_{som}\), \(RhAn_{som}\), \(FIR_{som}\)

C_som

\(W_{ly1}\)

Layer 1 water

mmH2O

\(Qx_{inf}\)

\(Ev\), \(Tr_{ly1}\), \(Q_{ly1}\), \(Qx_{ly1,2}\)

H2O_LY1

\(W_{ly2}\)

Layer 2 water

mmH2O

\(Qx_{ly1,2}\)

\(Tr_{ly2}\), \(Q_{ly2}\), \(Qx_{ly2,3}\)

H2O_LY2

\(W_{ly3}\)

Layer 3 water

mmH2O

\(Qx_{ly2,3}\)

\(Q_{ly3}\)

H2O_LY3

\(W_{swe}\)

Snow water equivalent

mmH2O

\(P_{snow}\)

\(Melt\), \(Subl\)

H2O_SWE

\(E_{ly1}\)

Energy content of \(W_{ly1}\)

J m-2

\(E_{gh}\), \(EQx_{inf}\)

\(EEv\), \(ETr_{ly1}\), \(EQ_{ly1}\), \(EQx_{ly1,2}\), \(EQthx_{ly1,2}\)

E_LY1

\(E_{ly2}\)

Energy content of \(W_{ly2}\)

J m-2

\(EQx_{ly1,2}\), \(EQthx_{ly1,2}\)

\(ETr_{ly2}\), \(EQ_{ly2}\), \(EQx_{ly2,3}\), \(EQthx_{ly2,3}\)

E_LY2

\(E_{ly3}\)

Energy content of \(W_{ly3}\)

J m-2

\(E_{geo}\), \(EQx_{ly2,3}\), \(EQthx_{ly2,3}\)

\(EQ_{ly3}\)

E_LY3

Diagnostic variables

:math:Abbreviation

Description

Units

Code string

Notes

\(LAI\)

Leaf area index

m2 m-2

D_LAI

\(SCF\)

Snow covered fraction

1

D_SCF

Fraction of non-vegetation-covered land surface (gap fraction) that is covered by a layer of snow.

\(T_{ly1}\)

\(W_{ly1}\) temperature

K

D_TEMP_LY1

\(T_{ly2}\)

\(W_{ly2}\) temperature

K

D_TEMP_LY2

\(T_{ly3}\)

\(W_{ly3}\) temperature

K

D_TEMP_LY3

\(LF_{ly1}\)

\(W_{ly1}\) liquid fraction

1

D_LF_LY1

Ratio of liquid water to total water in layer 1

\(LF_{ly2}\)

\(W_{ly2}\) liquid fraction

1

D_LF_LY2

Ratio of liquid water to total water in layer 2

\(LF_{ly3}\)

\(W_{ly3}\) liquid fraction

1

D_LF_LY3

Ratio of liquid water to total water in layer 3

\(\theta_{ly1}\)

\(W_{ly1}\) soil moisture

1

D_SM_LY1

Ratio of total water to pore space in layer 1

\(\theta_{ly2}\)

\(W_{ly2}\) soil moisture

1

D_SM_LY2

Ratio of total water to pore space in layer 2

\(\theta_{ly3}\)

\(W_{ly3}\) soil moisture

1

D_SM_LY3

Ratio of total water to pore space in layer 3

\(\Psi_{ly1}\)

\(W_{ly1}\) water potential

MPa

D_PSI_LY1

\(\Psi_{ly2}\)

\(W_{ly2}\) water potential

MPa

D_PSI_LY2

\(\Psi_{ly3}\)

\(W_{ly3}\) water potential

MPa

D_PSI_LY3

Fluxes

Abbreviation

Description

Units

Code string

Notes

\(GPP\)

Gross primary production

gC m-2 d-1

gpp

Gross C assimilation, without leaf maintenance respiration removed

\(GPP_{net}\)

Net gross primary production

gC m-2 d-1

gppnet

Net \(GPP\) after removing leaf maintenance respiration, same as labile production

\(PRD_{lab}\)

Labile production

gC m-2 d-1

lab_prod

Same as \(GPP_{net}\) (flagged for removal)

\(PRD_{fol}\)

Foliar production

gC m-2 d-1

foliar_prod

\(PRD_{roo}\)

Fine root production

gC m-2 d-1

root_prod

\(PRD_{woo}\)

Wood and coarse root production

gC m-2 d-1

wood_prod

\(Ra_{gr}\)

Autotrophic growth respiration

gC m-2 d-1

resp_auto_growth

\(Ra_{dark}\)

Autotrophic maintenance dark respiration

gC m-2 d-1

resp_auto_maint_dark

Mitochondrial respiration from \(C_{fol}\)

\(Ra_{maint}\)

Autotrophic maintenance respiration

gC m-2 d-1

resp_auto_maint

Includes \(Ra_{dark}\)

\(RhAe_{cwd}\)

Aerobic heterotrophic respiration from \(C_{cwd}\)

gC m-2 d-1

ae_rh_cwd

\(DEC_{fol}\)

Background foliar mortality

gC m-2 d-1

fol2lit

\(C_{fol}\) transferred to \(C_{lit}\) due to mortality

\(DECph_{fol}\)

Phenological foliar mortality

gC m-2 d-1

ph_fol2lit

\(C_{fol}\) transferred to \(C_{lit}\) due to phenological senescence

\(DEC_{woo}\)

Wood and coarse root mortality

gC m-2 d-1

woo2cwd

\(C_{woo}\) transferred to \(C_{cwd}\)

\(DEC_{roo}\)

Fine root mortality

gC m-2 d-1

roo2lit

\(C_{roo}\) transferred to \(C_{lit}\)

\(DEC_{lab}\)

Labile mortality

gC m-2 d-1

lab2lit

\(C_{lab}\) transferred to \(C_{lit}\)

\(DEC_{cwd}\)

Coarse woody debris decomposition

gC m-2 d-1

cwd2som

\(C_{cwd}\) transferred to \(C_{som}\)

\(DEC_{lit}\)

Litter decomposition

gC m-2 d-1

lit2som

\(C_{lit}\) transferred to \(C_{som}\)

\(DIS_{lab}\)

\(C_{lab}\) disturbance loss

gC m-2 d-1

dist_lab

\(DIS_{fol}\)

\(C_{fol}\) disturbance loss

gC m-2 d-1

dist_fol

\(DIS_{woo}\)

\(C_{woo}\) disturbance loss

gC m-2 d-1

dist_woo

\(DIS_{roo}\)

\(C_{roo}\) disturbance loss

gC m-2 d-1

dist_roo

\(FIR_{lab}\)

\(C_{lab}\) fire loss

gC m-2 d-1

f_lab

Combustion loss to atmosphere

\(FIR_{fol}\)

\(C_{fol}\) fire loss

gC m-2 d-1

f_fol

Combustion loss to atmosphere

\(FIR_{woo}\)

\(C_{woo}\) fire loss

gC m-2 d-1

f_woo

Combustion loss to atmosphere

\(FIR_{roo}\)

\(C_{roo}\) fire loss

gC m-2 d-1

f_roo

Combustion loss to atmosphere

\(FIR_{lit}\)

\(C_{lit}\) fire loss

gC m-2 d-1

f_lit

Combustion loss to atmosphere

\(FIR_{cwd}\)

\(C_{cwd}\) fire loss

gC m-2 d-1

f_cwd

Combustion loss to atmosphere

\(FIR_{som}\)

\(C_{som}\) fire loss

gC m-2 d-1

f_som

Combustion loss to atmosphere

\(FIRx_{lab}\)

\(C_{lab}\) fire mortality

gC m-2 d-1

fx_lab2lit

Transfer of \(C_{lab}\) to \(C_{lit}\) due to fire

\(FIRx_{fol}\)

\(C_{fol}\) fire mortality

gC m-2 d-1

fx_fol2lit

Transfer of \(C_{fol}\) to \(C_{lit}\) due to fire

\(FIRx_{roo}\)

\(C_{roo}\) fire mortality

gC m-2 d-1

fx_roo2lit

Transfer of \(C_{roo}\) to \(C_{lit}\) due to fire

\(FIRx_{woo}\)

\(C_{woo}\) fire mortality

gC m-2 d-1

fx_woo2cwd

Transfer of \(C_{woo}\) to \(C_{cwd}\) due to fire

\(FIRx_{cwd}\)

\(C_{cwd}\) fire mortality

gC m-2 d-1

fx_cwd2som

Transfer of \(C_{cwd}\) to \(C_{som}\) due to fire

\(FIRx_{lit}\)

\(C_{lit}\) fire mortality

gC m-2 d-1

fx_lit2som

Transfer of \(C_{lit}\) to \(C_{som}\) due to fire

\(RhAe_{lit}\)

Aerobic heterotrophic respiration from \(C_{lit}\)

gC m-2 d-1

ae_rh_lit

\(RhAe_{som}\)

Aerobic heterotrophic respiration from \(C_{som}\)

gC m-2 d-1

ae_rh_som

\(RhAe_{tot}\)

Total heterotrophic respiration CO2 flux

gC m-2 d-1

rh_co2

Sum of \(RhAe_{cwd}\), \(RhAe_{lit}\), and \(RhAe_{som}\)

\(RhAn_{cwd}\)

Anaerobic heterotrophic respiration from \(C_{cwd}\)

gC m-2 d-1

an_rh_cwd

\(RhAn_{lit}\)

Anaerobic heterotrophic respiration from \(C_{lit}\)

gC m-2 d-1

an_rh_lit

\(RhAn_{som}\)

Anaerobic heterotrophic respiration from \(C_{som}\)

gC m-2 d-1

an_rh_som

\(RhAn_{tot}\)

Total heterotrophic respiration CH4 flux

gC m-2 d-1

rh_ch4

Sum of \(RhAn_{cwd}\), \(RhAn_{lit}\), and \(RhAn_{som}\)

\(Q_{surf}\)

Surface H2O runoff

mmH2O d-1

q_surf

\(Q_{ly1}\)

Runoff from \(W_{ly1}\)

mmH2O d-1

q_ly1

\(Q_{ly2}\)

Runoff from \(W_{ly2}\)

mmH2O d-1

q_ly2

\(Q_{ly3}\)

Runoff from \(W_{ly3}\)

mmH2O d-1

q_ly3

\(Qx_{inf}\)

Surface H2O infiltration to \(W_{ly1}\)

mmH2O d-1

infil

\(Qx_{ly1,2}\)

Transfer from \(W_{ly1}\) to \(W_{ly2}\)

mmH2O d-1

ly1xly2

Positive values indicate downward transfer

\(Qx_{ly2,3}\)

Transfer from \(W_{ly2}\) to \(W_{ly3}\)

mmH2O d-1

ly2xly3

Positive values indicate downward transfer

\(EQ_{ly1}\)

Internal energy of \(Q_{ly1}\)

J m-2 d-1

q_ly1_e

Based on temperature of \(W_{ly1}\)

\(EQ_{ly2}\)

Internal energy of \(Q_{ly2}\)

J m-2 d-1

q_ly2_e

Based on temperature of \(W_{ly2}\)

\(EQ_{ly3}\)

Internal energy of \(Q_{ly3}\)

J m-2 d-1

q_ly2_e

Based on temperature of \(W_{ly2}\)

\(EQx_{inf}\)

Internal energy of \(Qx_{inf}\)

J m-2 d-1

infil_e

Based on weighted average temperature of snow melt (273.15K) and rainfall (air temperature)’;

\(EQx_{ly1,2}\)

Internal energy of \(Qx_{ly1,2}\)

J m-2 d-1

ly1xly2_e

Based on temperature of donor pool (\(W_{ly1}\) when \(Qx_{ly1,2}\) is positive, \(W_{ly2}\) when \(Qx_{ly1,2}\) is negative)

\(EQx_{ly2,3}\)

Internal energy of \(Qx_{ly2,3}\)

J m-2 d-1

ly2xly3_e

Based on temperature of donor pool (\(W_{ly2}\) when \(Qx_{ly2,3}\) is positive, \(W_{ly3}\) when \(Qx_{ly2,3}\) is negative)

\(EQthx_{ly1,2}\)

Thermal condictivity between \(E_{ly1}\) and \(E_{ly2}\)

J m-2 d-1

ly1xly2_th_e

\(EQthx_{ly2,3}\)

Thermal condictivity between \(E_{ly2}\) and \(E_{ly3}\)

J m-2 d-1

ly2xly3_th_e

\(E_{gh}\)

Ground heat heat flux

J m-2 d-1

gh_in

\(E_{geo}\)

Geological heat flux

J m-2 d-1

geological

\(Snow\)

Snowfall

mmH2O d-1

snowfall

Identical to \(P_{snow}\) forcing

\(Melt\)

Snowmelt

mmH2O d-1

melt

\(Subl\)

Sublimation

mmH2O d-1

sublimation

\(Ev\)

Evaporation

mmH2O d-1

evap

\(Tr_{ly1}\)

Transpiration from \(W_{ly1}\)

mmH2O d-1

transp1

\(Tr_{ly2}\)

Transpiration from \(W_{ly2}\)

mmH2O d-1

transp2

\(EEv\)

Internal energy of \(Ev\)

J m-2 d-1

evap_e

\(ETr_{ly1}\)

Internal energy of \(Tr_{ly1}\)

J m-2 d-1

transp1_e

\(ETr_{ly2}\)

Internal energy of \(Tr_{ly2}\)

J m-2 d-1

transp2_e

\(SW_{in}\)

Incoming shortwave radiation

W m-2

SWin

\(SSRD\) forcing converted to W m-2

\(LW_{in}\)

Incoming longtwave radiation

W m-2

LWin

\(STRD\) forcing converted to W m-2

\(SW_{out}\)

Outgoing shortwave radiation

W m-2

SWout

\(LW_{out}\)

Outgoing longtwave radiation

W m-2

LWout

\(R_{net}\)

Net radiation

W m-2

net_radiation

Defined as \(SW_{in} + LW_{in} - SW_{out} - LW_{out}\)

\(H\)

Sensible heat flux

W m-2

sensible_heat

\(LE\)

Latent heat flux

W m-2

latent_heat

\(G\)

Ground heat flux

W m-2

ground_heat

Parameters

Abbreviation

Description

Units

Code string

Prior range

Notes

\(I_{max}\)

Maximum infiltration capacity

mmH2O d-1

max_infil

\([1,100]\)

\(\kappa_0\)

Saturated hydraulic conductivity

m s-1

hydr_cond

\([10^{-9},10^{-4}]\)

\(b\)

Retention parameter

None

retention

\([1.5,10]\)

\(z_{ly1}\)

\(W_{ly1}\) depth

m

LY1_z

\([0.01,1]\)

\(z_{ly2}\)

\(W_{ly2}\) depth

m

LY2_z

\([0.01,20]\)

\(z_{ly3}\)

\(W_{ly3}\) depth

m

LY3_z

\([0.01,100]\)

\(p_{ly1}\)

\(W_{ly1}\) porosity

m3 m-3

LY1_por

\([0.2,0.8]\)

\(p_{ly2}\)

\(W_{ly2}\) porosity

m3 m-3

LY2_por

\([0.2,0.8]\)

\(p_{ly3}\)

\(W_{ly3}\) porosity

m3 m-3

LY3_por

\([0.2,0.8]\)

\(\psi_{fc}\)

Water potential at field capacity

-MPa

field_cap

\([0.01,0.1]\)

\(DF_{lit}\)

Fraction of decomposed \(C_{lit}\) transferred to \(C_{som}\)

1

tr_lit2som

\([0.01,0.99]\)

\(DF_{cwd}\)

Fraction of decomposed \(C_{cwd}\) transferred to \(C_{som}\)

1

tr_cwd2som

\([0.01,0.99]\)

\(K_{roo}\)

Autotrophic maintenance respiration coefficient for roots at 25\(^{\circ}\)C

d-1

rauto_mr_r

\([10^{-4},10^{-2}]\)

\(K_{woo}\)

Autotrophic maintenance respiration coefficient for wood at 25\(^{\circ}\)C

d-1

rauto_mr_w

\([10^{-6},5 \times 10^{-5}]\)

\(Q_{10}^{Ra}\)

Autotrophic maintenance respiration Q10 coefficient

1

rauto_mr_q10

\([1,5]\)

\(Q_{10}^{dark}\)

Dark respiration Q10 coefficient

1

rauto_mrd_q10

\([1,5]\)

\(\Gamma\)

Growth yield

1

rauto_gr

\([0.6,0.95]\)

gC in new biomass per gC used for growth, see Cannell and Thornley 2000

\(k_{woo}\)

Background turnover rate of \(C_{woo}\)

d-1

t_wood

\([2.5\times 10^{-5},10^{-2}]\)

\(k_{lab}\)

Background turnover rate of \(C_{lab}\)

d-1

t_lab

\([10^{-4},10^{-2}]\)

\(k_{roo}\)

Background turnover rate of \(C_{roo}\)

d-1

t_roo

\([10^{-4},10^{-2}]\)

\(k_{fol}\)

Background turnover rate of \(C_{fol}\)

d-1

t_fol

\([6.8\times 10^{-4},3.34\times 10^{-2}]\)

\(k_{lit}\)

Background turnover rate of \(C_{lit}\)

d-1

t_lit

\([10^{-4},10^{-1}]\)

check units???

\(k_{cwd}\)

Background turnover rate of \(C_{cwd}\)

d-1

t_cwd

\([5\times 10^{-5},5\times 10^{-2}]\)

check units???

\(k_{som}\)

Background turnover rate of \(C_{som}\)

d-1

t_som

\([10^{-7},10^{-1}]\)

check units???

\(Q_{10}^{aer}\)

Q10 coefficient of aerobic heterotrphic respiration

1

Q10rhco2

\([1,5]\)

\(Q_{10}^{ana}\)

Q10 coefficient of anaerobic heterotrphic respiration

1

Q10ch4

\([1,5]\)

\(f_{CH_{4}}\)

CH4 to CO2 conversion ratio

1

r_ch4

\([0.001,0.9]\)

\(LCMA\)

Leaf carbon mass per area

gC m-2

LCMA

\([5,200]\)

\(i_{C_{lab}}\)

Initial value of \(C_{lab}\)

gC m-2

i_labile

\([1,10^{5}]\)

\(i_{C_{fol}}\)

Initial value of \(C_{fol}\)

gC m-2

i_foliar

\([1,2\times 10^{3}]\)

\(i_{C_{roo}}\)

Initial value of \(C_{roo}\)

gC m-2

i_root

\([1,2\times 10^{3}]\)

\(i_{C_{woo}}\)

Initial value of \(C_{woo}\)

gC m-2

i_wood

\([1,10^{5}]\)

\(i_{C_{cwd}}\)

Initial value of \(C_{cwd}\)

gC m-2

i_cwd

\([1,10^{5}]\)

\(i_{C_{lit}}\)

Initial value of \(C_{lit}\)

gC m-2

i_lit

\([1,2\times 10^{3}]\)

\(i_{C_{som}}\)

Initial value of \(C_{som}\)

gC m-2

i_som

\([1,2\times 10^{5}]\)

\(i_{\theta_{ly1}}\)

Initial value of \(\theta_{ly1}\)

1

i_LY1_SM

\([0.01,1]\)

\(i_{\theta_{ly2}}\)

Initial value of \(\theta_{ly2}\)

1

i_LY2_SM

\([0.01,1]\)

\(i_{\theta_{ly3}}\)

Initial value of \(\theta_{ly3}\)

1

i_LY3_SM

\([0.01,1]\)

\(i_{SWE}\)

Initial value of \(\W_{swe}\)

mm H2O

i_SWE

\([10^{-6},10^{4}]\)

\(i_{E_{ly1}}\)

Initial value of \(E_{ly1}\)

J mmH2O-1

i_LY1_E

\([4.67\times 10^{5},1.11\times 10^{6}]\)

Energy in 1mm H2O at -50C to 1mm H2O at +50C ?????

\(i_{E_{ly2}}\)

Initial value of \(E_{ly2}\)

J mmH2O-1

i_LY2_E

\([4.67\times 10^{5},1.11\times 10^{6}]\)

Energy in 1mm H2O at -50C to 1mm H2O at +50C ?????

\(i_{E_{ly3}}\)

Initial value of \(E_{ly3}\)

J mmH2O-1

i_LY3_E

\([4.67\times 10^{5},1.11\times 10^{6}]\)

Energy in 1mm H2O at -50C to 1mm H2O at +50C ?????

\(VHC_{E_{ly1}}\)

Volumetric heat capacity of \(E_{ly1}\)

J K m-3

LY1_vhc

\([1.3\times 10^{6},3\times 10^{6}]\)

\(VHC_{E_{ly2}}\)

Volumetric heat capacity of \(E_{ly2}\)

J K m-3

LY2_vhc

\([1.3\times 10^{6},3\times 10^{6}]\)

\(VHC_{E_{ly3}}\)

Volumetric heat capacity of \(E_{ly3}\)

J K m-3

LY3_vhc

\([1.3\times 10^{6},3\times 10^{6}]\)

\(CF_{fol}\)

Foliar combustion factor

1

cf_foliar

\([0.01,1]\)

\(CF_{lig}\)

Ligneous combustion factor

1

cf_ligneous

\([0.01,1]\)

\(CF_{som}\)

Soil combustion factor

1

cf_DOM

\([0.01,1]\)

\(r\)

Resilience factor

1

resilience

\([0.01,1]\)

\(Q_{ex}\)

Excess runoff factor

1

Q_excess

\([0.01,1]\)

\(g_{1}\)

Medlyn \(g_{1}\) parameter cite paper

1

Med_g1

\([1.79,5.79]\)

\(V_{cmax25}\)

Maximum rate of RuBisCO carboxylization at 25\(^{\circ}\)C

\(\mu\)molCO2 m-2 s-1

Vcmax25

\([1,150]\)

\(Tmin_{min}\)

Minimum cold temperature scaling factor

K

Tminmin

\([258.15,273.15]\)

cite Stetz paper

\(Tmin_{max}\)

Maximum cold temperature scaling factor

K

Tminmax

\([273.15,288.15]\)

cite Stetz paper

\(T_{upp}\)

Upper temperature limit for photosynthesis

K

Tupp

\([249.15,318.15]\)

\(T_{down}\)

Lower temperature limit for photosynthesis

K

Tdown

\([213.15,286.15]\)

\(g_{a}\)

Aerodynamic conductance

m s-1

ga

\([10^{-3},10]\)

\(\Omega\)

Leaf clumping index

1

clumping

\([0.35,1]\)

\(\rho_{PAR}\)

Reflectance for photosynthetically active radiation

1

leaf_refl_par

\([0.01,0.5]\)

\(\rho_{NIR}\)

Reflectance for near infrared radiation

1

leaf_refl_nir

\([0.3,0.7]\)

\(sn_{1}\)

Minimum temperature threshold for snow melt

K

min_melt

\([263.15,283.15]\)

\(sn_{2}\)

Snowmelt slope

????

melt_slope

\([10^{-5},1]\)

\(sn_{3}\)

Snow cover fraction scalar

????

scf_scalar

\([10,10^{3}]\)

\(S_{fv}\)

Scalar for aerobic volumetric fraction

????

S_fv

\([1,100]\)

\(\theta_{opt}\)

Optimum soil moisture for water scalar in heterotrophic respiration

1

thetas_opt

\([0.2,1]\)

\(F_{wc}\)

water scaler fW value at the end point C

????

fwc

\([0.01,1]\)

\(Ev_{max}\)

Maximum pan evaporation

mm d-1

maxPevap

\([0.01,100]\)

\(T_{\phi}\)

Maximum temperature at leaf onset

K

T_phi

\([268.15,323.15]\)

\(T_{range}\)

Spatial range of mean temperature at leaf onset

K

T_range

\([0.1,10]\)

\(\Lambda_{g}\)

LAI linear growth constant

Per time-step

plgr

\([0.001,0.5]\)

\(K_{leaf}\)

Inverse of leaf longevity during senescence period

Per time-step

k_leaf

\([0.001,0.5]\)

\(\Lambda_{max}\)

Intrinsic maximum LAI

m2 m-2

plgr

\([0.1,10]\)

\(\tau_{LAI}\)

Target survival time for LAI under water-deficit conditions

d ????

tau_W

\([0.1,300]\)

\(t_{c}\)

Mean daylength at leaf shedding

hours of sunlight d-1

time_c

\([2,22]\)

\(t_{r}\)

Spatial range of \(t_{c}\)

hours of sunlight d-1

time_r

\([0.1,6]\)

\(T_{mem}\)

Initial value of LAI temperature memory

K

init_T_mem

\([268.14,323.15]\)

\(\theta_{mem}\)

Initial value of LAI water/structural memory

1

init_LAIW_mem

\([0.1,1]\)

\(\psi_{50}\)

50% stomatal closure water potential

-MPa

psi_50

\([0.1,30]\)

Water potential when soil-plant continuum is at 50% hydraulic conductivity due to stomatal closure

\(\psi_{hmf}\)

50% mortality water potential

-MPa

psi_50

\([0.1,30]\)

Water potential triggering 50% biomass mortality due to cavitation

\(\Beta_{plgr}\)

Photosynthetic water stress logistic growth rate

None

beta_lgr

\([4.1,50]\)

\(\Beta_{mlgr}\)

Mortality water stress logistic growth rate

None

beta_lgrHMF

\([4.1,50]\)

\(\phi_{rl}\)

Root-to-leaf allocation ratio

1

phi_RL

\([10^{-4},5]\)

Ratio of carbon allocation to root per target foliar pool size

\(\phi_{wl}\)

Wood-to-leaf allocation ratio

1

phi_WL

\([10^{-4},5]\)

Ratio of carbon allocation to wood per target foliar pool size

\(\kappa_{deep}\)

Deep soil thermal conductivity

W m-1 K-1

thermal_cond

\([0.3,2]\)

\(\kappa_{surf}\)

Surface soil thermal conductivity

W m-1 K-1

thermal_cond_surf

\([0.03,2]\)

\(Q_{10}^{gpp}\)

Q10 coefficient for \(GPP\)

1

q10canopy

\([1,5]\)

\(RDSF\)

Something about dark respiration??

???

canopyRdsf

\([0.005,0.025]\)

\(Es\)

Sublimation rate

mm/day/SCF/kPha/(MJ/m2/d) ???

sublimation_rate

\([0.001,10]\)

\(f_{root}\)

Root fraction of \(W_{ly2}\) to \(W_{ly1}\)

mm/day/SCF/kPha/(MJ/m2/d) ???

sublimation_rate

\([0.001,1]\)